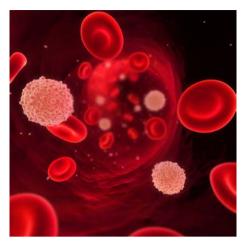
MACHEREY-NAGEL

Products for cfDNA and miRNA isolation

Circulating nucleic acids from plasma

- Flexible solutions for small and large blood plasma volumes
- Highly efficient recovery of nucleic acids from "Liquid Biopsies"
- Excellent sensitivities in downstream assays such as NGS, qPCR, ddPCR



Where do circulating nucleic acids derive from?

Cells in the human body occasionally undergo apoptosis. During this process, DNA is fragmented and secreted from the cells. Healthy cells, fetal cells, tumor cells, as well as transplanted cells can release DNA into the bloodstream. However, the amount of cell-free DNA (cfDNA) in the blood plasma is very low, usually below 10 ng/mL plasma.

Circulating miRNA in blood plasma is either present in exosomes that are secreted by the cells or is associated with RNA-binding proteins. In both cases, the miRNA is prevented from degrading.

Why analyze circulating nucleic acids?

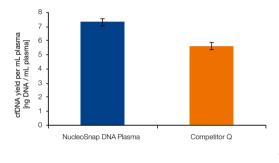
The analysis of cell-free nucleic acids allows for non-invasive monitoring of a disease, the detection of an euploidy of an unborn child, or the rejection of a transplant.

Cell-free nucleic acids are especially promising targets in the field of cancer diagnostics for monitoring disease progression, therapeutic effects of a treatment, or recurrence of cancer. In addition, the analysis of cell-free nucleic acids usually allows for an earlier diagnosis compared to invasive methods such as common tissue biopsies. Therefore, the analysis of circulating nucleic acids from body fluids is called a "Liquid Biopsy".

How are circulating nucleic acids analyzed?

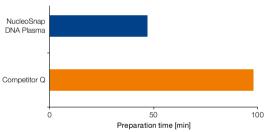
EDTA blood draw tubes or Cell-Free DNA BCT® (Streck, Inc.) are usually utilized in blood sampling for a "Liquid Biopsy". After pelletting the cellular components of the collected blood, the supernatant is used for nucleic acid isolation. Next, quantification of cfDNA is ideally carried out by qPCR or capillary electrophoresis since common methods such as absorption measurement or fluorescent dye based quantification might lead to false results due to low DNA concentration. The cell-free nucleic acids are then analyzed by sensitive methods such as digital PCR, quantitative PCR, or NGS technologies to detect targets such as miRNA, single nucleotide variants, or chromosome mutations.

The new cfDNA products allow for processing of large plasma volumes, which is often required in order to increase the sensitivity of these downstream assays.



NucleoSnap DNA Plasma

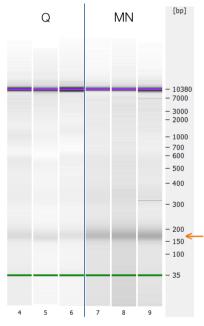
Isolation of cfDNA from	n up to 10 mL blood plasma	Snap-off
Technology	Silica-membrane technology	column for
Format	Snap-off column, vacuum processing	
Sample material	1–10 mL plasma	processing
Blood draw tubes	EDTA, Cell-Free DNA BCT® (Streck)	large volumes
Fragment size	≥50 bp	
Typical yield	Depending on sample source, storage and quality	
Elution volume	20–100 µL	
Preparation time	50 min/12 preps (EDTA plasma)	



Application data

Efficient isolation of cfDNA from 5 mL human EDTA plasma

Isolation of cfDNA from EDTA plasma with the NucleoSnap DNA Plasma kit and a vacuum-based kit from a competitor (Competitor Q). DNA yields were quantified by qPCR (Quantifiler® Human DNA Quantification Kit, ThermoFisher Scientific on a Applied Biosystems 7500 Real-Time PCR Systems, ThermoFisher Scientific).


Time-saving procedure

cfDNA can be isolated from 12 EDTA preserved samples with the NucleoSnap DNA Plasma Kit in less than 50 min. whereas the procedure of competitor Q takes more than 80 min.

Convenient vacuum-processing

24 samples can be processed in parallel with our NucleoVac 24 Vacuum Manifold, and no centrifugation steps are required during binding and washing steps.

Optimized protocol for cfDNA isolation from Cell-Free DNA BCT[®] (Streck)

cfDNA was isolated from three independent Cell-free DNA BCT[®] preserved samples with the NucleoSnap DNA Plasma kit (MN) and a vacuum-processed kit from competitor (Q). The isolated cfDNA shows the typical peak at approx. 170 bp, indicated by an arrow (←). cfDNA was separated on a Bioanalyzer[™] 2100 with a High Sensitivity DNA Kit (Agilent).

Ordering information

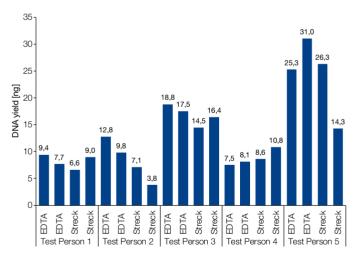
Product	Specifications	Preps	REF
NucleoSnap DNA Plasma	Manual vacuum processing, up to 10 mL plasma	10/50	740300.10/.50

NucleoSpin® DNA Plasma Midi

Isolation of cfDNA from up to 5 mL blood plasma

Technology	Silica-membrane technology
Format	Midi spin column
Sample material	1–5 mL plasma
Blood draw tubes	Human EDTA / Cell-Free DNA BCT® (Streck)
Fragment size	≥ 50 bp
Typical yield	Depending on sample source, storage and quality
Elution volume	200 µL (140 µL final eluate volume)
Preparation time	~ 90 min/24 preps

NucleoSpin[®] 96 DNA Plasma


Isolation of cfDNA from up to 2 mL blood plasma

		throughput
Technology	Silica-membrane technology	solutions
Format	96-well plates	
Sample material	0.5–2 mL plasma	
Blood draw tubes	Human EDTA / Cell-Free DNA BCT® (St	reck)
Fragment size	≥ 50 bp	
Typical yield	Depending on sample source, storage	and quality
Elution volume	100 μL (70 μL final eluate volume)	
Preparation time	~ 90 min/96 preps	

Application data

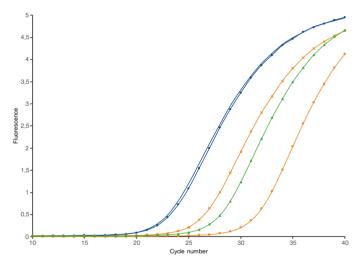
Efficient isolation of cfDNA from 2 mL plasma in 96-well format

Comparison of the cfDNA yield from 2 mL plasma samples from different individuals and different blood draw tubes. The results show that the NucleoSpin® 96 DNA Plasma kit enables the successful isolation of cfDNA from commonly used blood collection tubes. DNA was quantified by qPCR (Quantifiler® Human DNA Quantification Kit, Thermo Fisher Scientific).

Ordering information

Product	Specifications	Preps	REF
NucleoSpin® DNA Plasma Midi	Medium-throughput isolation of cfDNA	48	740303.48
NucleoSpin® DNA Plasma Midi Core Kit	Medium-throughput isolation of cfDNA	48	740302.48
NucleoSpin [®] 96 DNA Plasma	High-throughput isolation of cfDNA	1x96/4x96	740873.1/.4
NucleoSpin [®] 96 DNA Plasma Core Kit	High-throughput isolation of cfDNA	1x96/4x96	740874.1/.4

Medium


NucleoSpin® miRNA Plasma

Efficient isolation of miRNA from plasma or serum without phenol/chloroform

Technology	Silica-membrane technology	
Format	Mini spin columns	
Sample material	300 μ L plasma or serum (900 μ L with multiple loading steps)	
Blood draw tubes	EDTA	
Fragment size	> 15 nt	
Typical yield	Depending on sample source, storage and quality	
Elution volume	20–50 μL	
Preparation time	40 min/10 preps (without rDNase digestion) 70 min/10 preps (with rDNase digestion)	
Binding capacity	200 µg	

Simple procedure without phenol / chloroform

Application data

- NucleoSpin[®] miRNA Plasma (without rDNase)
- NucleoSpin[®] miRNA Plasma (with rDNase)
- Competitor Q (CNA Kit)
 Competitor Q (miRNA Kit)
- Competitor Q (mi

Higher miRNA yields

Purified miRNA (2 µL of each eluate) was used as a template in quantitative realtime RT-PCR for miR-16 miRNA (Applied Biosystems, TaqMan[®] MicroRNA RT Kit, hsa-miR-16 MicroRNA Assay). The results show that C_{τ} values are lowest for NucleoSpin[®] miRNA Plasma, indicating highest miRNA yields. As a result, NucleoSpin[®] miRNA Plasma shows superior performance with or without optional DNase digestion.

References

Stückrath et al., 2015

Oncotarget. 2015 May 30; 6(15): 13387-13401

Aberrant plasma levels of circulating *miR-16*, *miR-107*, *miR-130a* and *miR-146a* are associated with lymph node metastasis and receptor status of breast cancer patients

In this study, miRNA was isolated from 300–600 μL plasma and analyzed by microarray profiling as well as qRT-PCR.

Vigneron et al., 2016

Molecular Oncology August 2016, 10 (7): 981-992

Towards a new standardized method for circulating miRNAs profiling in clinical studies: Interest of the exogenous normalization to improve miRNA signature accuracy

This paper includes a product comparison with competitors A and Q: "First, to maximize profiling signals and to reduce miRNA expression variability, three isolation kits were compared and the NucleoSpin® kit provided higher miRNA concentrations than the other widely used kits."

Combine with Exosome Precipitation Solution*

Ordering information

Product	Specifications	Preps/Pack of	REF
NucleoSpin [®] miRNA Plasma	miRNA isolation from plasma and serum	10/50/250	740981.10/.50/.250
Exosome Precipitation Solution* (Serum/ Plasma)	Enrichment of exosomes for miRNA isolation	2/12/60 mL	740398.2/.12/.60
Exosome Precipitation Solution* (Urine)	Enrichment of exosomes for miRNA isolation	12/50/250 mL	740399.12/.50/.250

* not available in the USA

Ordering information

ofDNA from plasma	Preps/Pack of	REF
NucleoSnap DNA Plasma	10/50	740300.10/.50
NucleoSpin® DNA Plasma Midi	48	740303.48
NucleoSpin® DNA Plasma Midi Core Kit	48	740302.48
NucleoSpin® 96 DNA Plasma	1x96/4x96	740873.1/.4
NucleoSpin® 96 DNA Plasma	1 x 96 / 4 x 96	740874.1/.4
NucleoSpin® Plasma XS	10/50/250	740900.10/.50/.250
niRNA from plasma and exosomes		
NucleoSpin® miRNA Plasma	10/50/250	740981.10/.50/.250
Exosome Precipitation Solution (Serum/Plasma)*	2/12/60 mL	740398.2/.12/.60
Exosome Precipitation Solution (Urine)*	12/50/250 mL	740399.12/.50/.250
Accessories		
NucleoVac 24 Vacuum Manifold	1	740299
NucleoVac Mini Adapter	100	740297.100
JucleoVac Valves	24	740298.24
NucleoVac 96 Vacuum Manifold	1	740681
NucleoVac Vacuum Regulator	1	740641
Starter Set Midi	1	740744
Related products		
NucleoSpin® miRNA Small and large RNA isolation from various sample types	10/50/250	740971.10/.50/.250
NucleoZOL Jniversal RNA isolation reagent for small and large RNA	200 mL	740404.200
NucleoSpin® RNA Set for NucleoZOL Mini spin kit for processing NucleoZOL lysates	10/50	740406.10/.50
NucleoSpin® Virus solation of viral RNA and DNA from serum and plasma	10/50/250	740983.10/.50/.250
NucleoSpin® 96 Virus High throughput viral RNA and DNA isolation from serum and plasma	2x96/4x96	740691.2/.4
NucleoMag® Virus Magentic bead-based isolation of viral RNA and DNA	1x96/4x96	744800.1/.4
JucleoMag® VET	1x96/4x96	744200.1/.4

Trademarks: NucleoSpin is a registered trademark of MACHEREY-NAGEL GmbH & Co. KG Cell-free DNA BCT is a registered trademark of Streck, Inc. Bioanalyzer is a registered trademark of Agilent Technologies, Inc. Quantifiler is a registered trademark of Applied Biosystems

Your distributor

www.mn-net.com

CHEREY-NAGEL MA

MACHEREY-NAGEL GmbH & Co. KG · Neumann-Neander-Str. 6-8 · 52355 Düren · Germany (MN)

DE/International: Tel.: +49 24 21 969-0 +49 24 21 969-199 Fax: E-mail: info@mn-net.com

CH: Tel.: +41 62 388 55 00 Fax: +41 62 388 55 05 E-mail: sales-ch@mn-net.com E-mail: sales-fr@mn-net.com

FR: Tel.: +33 388 68 22 68 Fax: +33 388 51 76 88

Tel.: Fax:

US:

+1 484 821 0984 +1 484 821 1272 E-Mail: sales-us@mn-net.com

